首页> 外文OA文献 >Process Variation in Silicon Photonic Devices
【2h】

Process Variation in Silicon Photonic Devices

机译:硅光子器件中的工艺变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The high index contrast of the silicon - silicon dioxide material system allows for dense integration of optical waveguide devices. Possible applications include intra-chip, inter-chip and fiber optic interconnection systems. Optical intra-chip interconnections become more desirable as the complementary metal-oxide-semiconductor (CMOS) circuit density puts ever tighter constraint on on-chip interconnection performance. Board level, rack level and rack-to-rack data center interconnections are ever more constrained by space and bandwidth to which silicon photonic modules may offer an improvement. As fiber optic systems serve smaller and smaller area systems, integrated switching systems that are enabled by silicon photonic devices involving wavelength division multiplexing (WDM) become more desirable.In this thesis, we firstly take a brief review of the development history of information technology, optical communication and silicon photonics. Secondly we examine the optical performance of an array of photonic devices which are the basic building blocks for silicon photonic circuits. Thirdly we turn the attention to the fabrication related issues. Silicon photonic circuits are prone to the thermal and fabrication induced process variations. We discover the process variation exhibits a “random walk” pattern with spatial extent at wafer scale. Fourthly we propose a simple method to extract fundamental parameters out of fabricated silicon photonic devices. Based on the systemic wafer-scale measurement results, our method combines the advantage of both numerical simulation and simple analytical modeling techniques. Lastly, we propose a variation-aware on-chip interconnect design for multi-core processors. This design adapts to on-chip thermal and process variation effects, pointing to the improvement of wafer-scale fabrication yield and interconnect network communication throughput.
机译:硅-二氧化硅材料系统的高折射率对比度允许光波导器件的密集集成。可能的应用包括芯片内,芯片间和光纤互连系统。随着互补金属氧化物半导体(CMOS)电路密度对片上互连性能的越来越严格的限制,光学内部芯片互连变得更加理想。板级,机架级和机架到机架的数据中心互连越来越受到硅光子模块可以改善的空间和带宽的限制。随着光纤系统服务于越来越小的区域系统,越来越需要由涉及波分复用(WDM)的硅光子器件实现的集成交换系统。在本文中,我们首先简要回顾一下信息技术的发展历史,光通信和硅光子学。其次,我们检查了一系列光子器件的光学性能,这些器件是硅光子电路的基本构建模块。第三,我们将注意力转向与制造有关的问题。硅光子电路容易受到热和制造引起的工艺变化的影响。我们发现工艺变化在晶圆规模上表现出空间分布的“随机游动”模式。第四,我们提出了一种从制造的硅光子器件中提取基本参数的简单方法。基于系统的晶圆级测量结果,我们的方法结合了数值模拟和简单分析建模技术的优势。最后,我们提出了一种用于多核处理器的变体感知片上互连设计。该设计适应了片上热和工艺变化的影响,指出了晶圆级制造成品率和互连网络通信吞吐量的提高。

著录项

  • 作者

    Chen, Xi;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号